
MATHEMATICA APPLICANDA
Vol. 48(1) 2020, p. 25–48

doi: 10.14708/ma.v48i1.6507

Zofia Wróblewska (Wrocław)

Approximate solutions and numerical analysis of a
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Abstract The paper refers to the classic spring-mass model of running, which was
created on the basis of an inverted elastic pendulum. A new approximate solution of
the boundary value problem relayed to the governing system based on two nonlinear
ordinary differential equations is introduced, which we get in this model in a natural
way. We give theoretical support by deriving asymptotic behaviour of obtained ap-
proximations. Simulations show that new solutions turn out very well. Our results
are illustrated with some practical examples.
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1. Introduction Running is the most intuitive way used by some ter-
restrial animals to move fast. Running has accompanied a man as a primal
form of movement from the very beginning. It seems that there is nothing
unusual about it. Nevertheless, this form of movement requires accurate and
complex cooperation of systems such as muscular, motor and neural [10]. On
the other hand, one has to agree with the fact that running is characterized
by simplicity and is seen as the most natural sport that exists [2]. Therefore,
it is a basis of a various sport disciplines. In sport science it is quite com-
mon to analyze and attempt to describe particular movements specific to a
considered discipline. However, running is one of the most important motor
skills. Its improvement can implicate a huge progression in overall results in
a given discipline. That is why the running analysis forms the core of this pa-
per. Better understanding of human performance during races provides better
insights into improved training methods (cf. [3], [9], [33], etc).

The difference between gait and running can be defined by an aerial phase
that lacks contact with the ground and which is common only for running.
All feet are in the air at some point in the run cycle, whereas in the gait
there is always at least one foot placed on the ground. Furthermore, running
is not just walking at a higher speed, and there is a notable transition of one
mode of motion to the other. The analysis of the run should start with an
observation of how running bipedal terrestrial animals move.

The astonishing elegance and efficiency with which animals’ legs traverse
natural terrain outclasses any present day man-made competitor. Beyond
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sheer fascination, such a technological superiority heavily attracts the inter-
est of many scientists. Over the decades, the legged locomotion has been
under close investigations. It combines biology, mathematics and engineer-
ing into one successful endeavour and is typical of various animals. Aristotle
[27] was the first to explore the topic, then, the seventeenth century Italian
mathematician and physiologist Giovanni Borelli [19] investigated the sub-
ject and gave the first biomechanical treatment. Modern surveys relates to
the scientific accounts of locomotion can be found in [17].

It seems, however, that despite intensive research activities in fields as
diverse as biomechanics, robotics and medicine, the overwhelming complexity
of biological systems can deny a comprehensive understanding of all functional
details of the leg movement apparatus. Using some simplifications, without
claiming to capture the whole system, any obtained models may well be suited
to succeed in identifying some underlying principles of pedal locomotion. In
running, as a fundamental way of rapid leg locomotion, a bouncing gait is
used. Several recent findings suggest an analogy to hopping by a simple spring
mass system. The skeletal system is considered in mechanical terms and it
is assumed that it behaves simply like a point mass bouncing passively on
a massless spring. In this paper the conceptual spring-mass model will be
revisited. For a thorough analysis we refer to [4] and [20]. It will be based on
an inverted elastic pendulum for each leg.

On the other hand, some earlier attempts to describe gait using a similar
construction utilizing an inverted pendulum (see [22]) led to a proliferation
of models, methods and interesting concepts that helped to create walking
robots (see [7]). The subsequent spring-mass model generalizations include
dampers, additional legs and segments (cf. [14], [21], [30], [31] and [32]). A
completely different approach to construct the model of legged locomotion
was proposed in [18]. The authors of [18] presented several algorithms using
the learning processes. In consequence, not only biomechanical studies inves-
tigating running, but also fast legged robots driven by model-based control
algorithms are an important part of the deliberations under consideration.

In this paper we introduce new approximate solutions of a boundary value
problem concerning the governing system related to the two nonlinear or-
dinary differential equations, which we get in a natural way in the classic
spring-mass model of running. It requires us to choose the stiffness in order
to ensure that the spring returns to its initial, equilibrium position after a
complete step. An asymptotic analysis of the main equations with the use
of the Poincaré - Lindstedt series was carried out in [28]. The solution of
the problem is based on the perturbative expansion related to the significant
spring stiffness. In addition, the authors of [28] used the obtained asymptotic
estimates to prove that there is a unique solution to the previously men-
tioned boundary value problem. Moreover, they provide an approximation to
the sought stiffness.



Zofia Wróblewska 27

Mathematical modelling is an important part of biomechanics. When
modeling such a complex object as the human body, it is good to start with
a simple case. That is why at the beginning, hopping in place with a vertical
velocity was described. After getting some intuition and adding horizontal ve-
locity, a target model of hopping forward was considered. Next, some attempts
have been made to model running using the best possible simplifications.

This paper is organized as follows. The spring-mass model for running is
introduced in Section 2. Section 3 contains an analysis based on the approx-
imate solution to the governing equations. Numerical methods can be found
in Section 4. Finally, conclusions and an illustration on real data examples of
how the solution works are given in Sections 6 and 5, respectively.

2. The spring-mass model In this section we present a mathematical
model for terrestrial running, based on a leg with properties of a simple spring.
Such a spring-mass system for hopping forward is described, among others,
in the papers [4], [16] and [20].

Under the assumption that only gravitational force (Fg) depends on body
mass (m) and spring force (Fs) play a role, Newton’s second law of motion
and Hooke’s law of elasticity lead to the following physical equation during
the contact phase:

F = Fg + Fs,

where F = ma, Fg = −mg, Fs = k∆l and also k denotes the spring stiffness
while ∆l stands for the change in the leg length.

In what follows we will provide a mathematical description of that model.

2.1. Model derivation The model for hopping forward (for example,
like a kangaroo) contains besides the kinematic variables (y, vy, ay, Fy) also
(x, vx, ax, Fx). Quantities such as speed and force are decomposed in the x-
and y-directions. The planar inverted spring-mass model for bouncing gaits
such as hopping and running is schematised in Figure 1 (see below).

Hopping forward introduces the leg length as an additional parameter in
the differential equations of the spring-mass model. Contact time not only
depends on the spring stiffness and the vertical landing velocity, but also on
the human’s speed and leg length.

Furthermore, we introduce two new angle conditions not found in the
simple one dimensional spring mass model of upward hopping. Namely, the
angle between the leg and ground at contact α (the leg angle of attack), and
the angle of velocity when contact is lost β (the angle of taking-off velocity).
These angles are most easily defined when we select the stance point as the
origin of the coordinate system during the contact phase, with the positive x-
axis in the direction of motion and the positive y-axis in the upward direction.
And in addition when we assume that the stance leg lands at time t = 0 :
tan(α) = −x0/y0 and tanβ = vy/vx (see Figure 1), where vx is the horizontal
landing and take-off speed, −vy and vy are the vertical landing and take-off
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Figure 1: The planar model, where velocity and displacement become vector quan-
tities. (a) The compression of the spring (∆l) can be represented by a horizontal
(∆x) and vertical (∆y) components. (b) Only stationary movements were selected
from all simulated hops. Symmetrical take off and landing velocities (v), β - angle
of landing velocity, θ = −α - angle of attack of the spring were assumed.

speed. Note that leg angle of attack and the angle of take-off velocity are not
necessarily equal (α 6= β).

(A) During the contact phase the planar movement from Newton’s second
law of motion can be described by two nonlinear differential equations ẍ = ω2

(
l0 −

√
x2 + y2

)
sin θ,

ÿ = ω2
(
l0 −

√
x2 + y2

)
cos θ − g,

(1)

where x is horizontal deflection, y - vertical deflection, g - gravitational
acceleration, ω =

√
k
m - natural frequency of a spring-mass system, k -

spring stiffness,m - mass and l0 =
√
x02 + y02 - the starting and ending

length of the spring. The initial conditions (ICs), in this case, are

x(0) = −l0 sinα, y(0) = l0 cosα,
ẋ(0) = v cosβ = vx, ẏ(0) = −v sinβ = −vy,

(2)

where vx is horizontal take-off speed and vy - vertical take-off speed. In
addition, angles α, β and deflections x0 = x(0), y0 = y(0) are defined
in Figure 1.

(B) During the aerial phase (Fs = 0) the equations of motion are
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ẍ = 0, ẋ(0) = vx, x(0) = l0 sinα,
ÿ = −g, ẏ(0) = vy, y(0) = l0 cosα.

(3)

Thus, the solutions of (3) are as follows

x = l0 sinα+ vxt and y = l0 cosα+ vyt−
gt2

2
. (4)

Therefore, from (4) and because of y(ta) = l0 cosα, where ta is aerial
time, we get

vy =
gta
2

and ta =
2vy
g
. (5)

2.2. Nondimensionalization and problem statement In this section
we will analyze nonlinear equations (1), which describe running during the
contact phase with initial conditions (2).

In order to transform the equations of motion (1) and initial conditions (2)
into a tractable dimensionless form we introduce the following dimensionless
variables:

X = x
l0
, Y = y

l0
, L =

√
x2+y2

l0
=
√
X2 + Y 2 and T = t

√
g
l0
.

For ease of computation we have normalised lengths with respect to l0,
and we have multiplied the time by the group (g/l0)

1/2 to make time di-
mensionless. We note that this group happens to be the (small-amplitude)
frequency of a pendulum made by hanging the mass from the (unstretched)
leg. It is easy to see that

Ẋ =
∂X

∂T
=

ẋ/l0

(g/l0)1/2
=

ẋ

(gl0)1/2
and Ẏ =

∂Y

∂T
=

ẏ/l0

(g/l0)1/2
=

ẏ

(gl0)1/2
,

Ẍ =
∂2X

∂T 2
=
ẍ/l0
g/l0

=
ẍ

g
and Ÿ =

∂2Y

∂T 2
=
ÿ/l0
g/l0

=
ÿ

g
.

Below, the differential equations (1) will be analysed in the following di-
mensionless form (see also Appendix B in [20]){

Ẍ = (ẍ/g) = (l0ω
2/g)(1− L) sin θ = K(1− L) sin θ,

Ÿ = (ÿ/g) = (l0ω
2/g)(1− L) cos θ − 1 = K(1− L) cos θ − 1,

(6)

where K = l0ω
2/g = kl0/mg - dimensionless leg stiffness. We note that the

product kl0 is the greatest force that can be developed by the leg-spring,
i.e. the force exerted by the fully compressed spring. Therefore, a ratio of
kl0/mg < 1 means that the force developed by the spring cannot overcome
the weight. We can also consider the ratio l0ω

2/g which is the square of
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the ratio of the natural frequency of the mass-spring system to the natural
frequency of the leg as a pendulum.

As an interesting consequence of substituting the assumed normalization
for length and time into the conditions on the initial (and final) velocities,
we have that these velocities are divided by a reference velocity (gl0)

1/2. This
reference velocity has a simple meaning. An inverted pendulum of length l0
swinging through the top of its arc would fly off the ground if the speed
of its mass were greater than (gl0)

1/2. In fluid mechanics, a velocity made
dimensionless by the factor (acceleration of gravity× length)1/2 is called the
Froude number.

The initial conditions (ICs) given by (2), in this case, are reduced to the
form

θ(0) = −α, L(0) = 1,

Ẋ(0) = vx(gl0)
− 1

2 = VX , Ẏ (0) = −vy(gl0)
− 1

2 = −VY ,
(7)

where VX is the horizontal Froude number and VY - the vertical Froude
number.

At the beginning of the rebound, the horizontal mass velocity ẋ is vx
while the vertical velocity ẏ is −vy (see (2)). Moreover, during the rebound,
we assume that the angle of the leg with respect to the vertical axis begins at
−α and ends +α. In addition, the x-velocity begins and ends with the value
vx, and the y-velocity is reversed by the step, starting with the value −vy and
ending with +vy. Therefore, in addition to the initial conditions (7), we also
assume the following final conditions (FCs) for equations (6)

θ(Tc) = α, L(Tc) = 1,

Ẋ(Tc) = VX , Ẏ (Tc) = VY ,
(8)

where Tc is dimensionless final contact time. The differential equations are
given in the dimensionless form to make the results representative of animals
of all body sizes.

It is both natural and beneficial to express the leading equations in polar
coordinates. We know that

sin θ = x√
x2+y2

and cos θ = y√
x2+y2

,

where θ is the polar angle and we have

X = L sin θ and Y = L cos θ. (9)

Thus, the system of the first derivatives of X and Y is given by the formulas

Ẋ = L̇ sin θ + Lθ̇ cos θ,

Ẏ = L̇ cos θ − Lθ̇ sin θ.
(10)
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Symbol Description Typical value
α Angle of attack 0.1− 0.8
VX Horizontal Froude number 0.8− 3.8
VY Vertical Froude number 0.05− 0.5

Table 1: Typical values of all nondimensional parameters input for the simulations
(cf. [11], [20] and also Sections 4 and 5).

Finally, we will present differential equations (6) in polar coordinates L
and θ (see (9)). By inserting into the formulas (6) the second derivatives of
X and Y , which are in forms

Ẍ = L̈ sin θ + 2L̇θ̇ cos θ − Lθ̇2 sin θ + Lθ̈ cos θ,

Ÿ = L̈ cos θ − 2L̇θ̇ sin θ − Lθ̇2 cos θ − Lθ̈ sin θ,

we get the following polar system{
Lθ̈ + 2L̇θ̇ = sin θ,

L̈− Lθ̇2 = K(1− L)− cos θ,
(11)

where the only nondimensional parameter is the spring stiffness K.
To obtain the initial conditions, from (7) and (10), we have to solve the

following system of equations{
θ̇(0) cosα − L̇(0) sinα = VX ,

θ̇(0) sinα + L̇(0) cosα = −VY .

Thus, the initial conditions (ICs) are represented by the formulas

θ(0) = −α, L(0) = 1,

θ̇(0) = θd, L̇(0) = −Ld,
(12)

with
θd = VX cosα− VY sinα and Ld = VX sinα+ VY cosα (13)

and using the dependence on the angle β (i.e. tanβ = VY /VX) with

θd =
VX cos(α+ β)

cosβ
and Ld =

VY sin(α+ β)

sinβ
. (14)

In Table 1 we have collected all nondimensional parameters appearing in
the model. The data based on [11] is calculated for various animals. Notice
that usually VX is the order of unity, while VY and α are small.

As the forwardly hoping leg is modeled by the inverted elastic pendulum,
a peculiar boundary value problem appears.

Problem Let (θ(T,K), L(T,K)) be the solution of the system (11) with (12).
Find K∗ and the smallest time T ∗ > 0 satisfying

θ(T ∗,K∗) = α, L(T ∗,K∗) = 1. (15)
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The spring stiffness K should be determined, so that during the first cycle
the spring returns to the equilibrium length at the exact moment when the
pendulum moves to the angle α. This means that the leg completes the full
cycle before switching into the aerial phase (see Figure 1). Thus, the final
conditions (FCs) are a symmetrical reflection of the initial ones (12) and
have the form

θ(T ∗) = α, L(T ∗) = 1,

θ̇(T ∗) = θd, L̇(T ∗) = Ld,
(16)

where θd and Ld are given by (13) or (14).
The nonlinear equations (11) with their initial and final conditions (12)

and (16) constitute a two-point boundary value problem that can be solved
using the shooting method (see Section 4).

3. Approximate solutions of nonlinear differential equations At
the beginning of this section we consider approximating a solution to (11) with
the boundary conditions (12) and (16). We derive an approximate solution in
elementary functions assuming a small angle of attack α (|θ| ≤ α) and a small
spring compression during the contact phase. Thus, the polar coordinates θ
and L satisfy the following conditions:

L ≈ 1 and
|θ| � 1 =⇒ sin θ ≈ θ and cos θ ≈ 1,

|θ̇| � 1 =⇒ L̇θ̇ ≈ 0 and Lθ̇2 ≈ 0.

The analysis shows that for spring compression of up to 20%, the angle of
attack is smaller than 30◦ (i.e. |θ| ≤ 30◦) and the approximate solution de-
scribes the dynamics of the center of mass within a 1% tolerance of spring
compression and 0.6◦ tolerance of angular motion compared to numerical
calculations. For more comments and explanations we refer to [13], where a
similar approximate solution, but for dimensional polar coordinates, was pro-
posed by Geyer, Seyfarth and Blickhan. Thus, taking into account the above
assumptions, our simplification of equations (11) is as follows

θ̈ − θ = 0,

L̈+KL = K − 1.
(17)

Equations (17) are already linear differential equations.

• The solution of the first equation of (17) is presented as follows

θ̃(T ) = θd sinhT − α coshT. (18)

By application of the final condition θ̃(T = T̃c) = α (see (16)) we obtain

coth (T̃c/2) =
θd
α



Zofia Wróblewska 33

and because the inverse hyperbolic cotangent is given by

arcoth x =
1

2
log

(
x+ 1

x− 1

)
we get the approximation of Tc with the formula

T̃c = log

(
θd + α

θd − α

)
, (19)

where θd > α or θd < −α.

• The solution of the second equation of (17) yields the approximation
for L

L̃(T ) = 1− ω−1Ld sinωT − ω−2(1− cosωT ), (20)

where ω2 = K. The next step is getting approximations for ω and
consequently K. Straightforward calculations from the condition L̃(T =
T̃c) = 1 (see (16)) give

tan
ωT̃c

2
= −ωLd, (21)

tan

(
π − ωT̃c

2

)
= ωLd

or
ω =

2(π − arctanωLd)

T̃c
, (22)

where ω̃ is the solution of (22) and T̃c is calculated from the equation
(19). From here we get K̃ = ω̃2. Because equation (22) can not be solved
analytically, Theorem 1, presented below, shows how the asymptotic
expansion of ω looks like.

It is worth underlining that this type of approximation of the planar
spring-mass dynamics may serve as an analytical tool for application in robotics
and further research on legged locomotion (cf. [13], [12], [25]).

In the second part of this section, we will examine the behavior of approx-
imations of L and θ, given by formulas (20) and (18), respectively. We start
with Theorem 1, which presents the asymptotic solution of the equation (22).

Theorem 1 Let ω̃ = a−1α
−1 + a0 + a1α + O(α2) be the solution of (22).

Then,

a−1 =
πθd
2
, a0 =

2

πLd
, a1 = − a20

a−1
− π2

12a−1
. (23)

Moreover,

K∗ ≈ K̃∗ :=

(
πθd
2α

)2

=
( π

2α
(VX cosα− VY sinα)

)2
, (24)

where K∗ is the solution to the Problem (15). 2
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Proof We begin by finding the asymptotic behaviour of ω̃T̃c/2. Using the
formula

log

(
θd + α

θd − α

)
=
∞∑
n=1

2α2n−1

(2n− 1)θ2n−1d

for |α| < θd, (25)

that is the Taylor expansion of the function T̃c around α = 0, we get

ω̃T̃c
2

=
a−1
θd

+
a0
θd
α+

a1 + a−1/(3θ
2
d)

θd
α2 +O(α3). (26)

Considering the term (π − arctanωLd), the Taylor expansion to the second
order about α = 0 is given by

π − arctanωLd =
π

2
+

1

Lda−1
α− a0

Lda
2
−1
α2 +O(α3). (27)

Next, a comparison of the respective coefficients of αn in (26) and (27) leads
to the following system of equations and solutions

a−1
θd

=
π

2
=⇒ a−1 =

πθd
2
, (28)

a0
θd

=
1

Lda−1
=⇒ a0 =

θd
Lda−1

=
2

πLd
, (29)

a1 + a−1/(3θ
2
d)

θd
= − a0

Lda
2
−1

=⇒ a1 = − θda0
Lda

2
−1
− a−1

3θ2d
(30)

= − a20
a−1
− π2

12a−1
.

Analogously, we can count the successive coefficients of expansion ω̃, but for
the sufficiently small initial angle α, the leading order of ω̃ is only the first
component.

The last part of the proof is to find an approximation to K∗. We have

ω̃ ≈ πθd
2α

as α→ 0+. (31)

Remembering that ω2 = K yields (24) and the proof is complete. �

Because in the expansion of ω̃ we finally take into account only the first
component a−1α−1 and eliminate higher-order terms, the approximation K̃∗

will reach lower values than K̃. How both K∗ parameter approximations K̃
and K̃∗ work will be presented in Section 4.

The same approximation of K∗ as (24) was obtained in [28] with a use
of asymptotic analysis (see Theorem 3 of [28]). Moreover, if we go back to
(14) and express θd in terms of the Froude numbers VX and VY , we see that
θd ≈ VX for sufficiently small α. Hence, (24) reduces to

VX �
√
K, K � 1. (32)
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Since VY ≤ VX , it can be concluded from the above that

V 2
X√
K
� VY �

√
K, K � 1. (33)

By inserting the approximation (24) into (33) we get

2VX
π

α� VY �
πVX
2α

, (34)

which is consistent with the small angle assumption.
The authors of [20] presented several approximations of K∗. It turned out

that the relationship between K∗ and VX should be quadratic for slower ve-
locity values, while linear for faster velocities. In both cases, the numerical
results were reproduced by the proposed empirical formulas. On the other
hand, the approximations (24) proposed in this paper provide a systematic
explanation of the leading order behaviour of K∗ for small values of α. This
can also be considered as an approximation of the quadratic part of the de-
pendence on VX .

At the end of this section we will show the asymptotic behaviour of L and
θ as K →∞, where L and θ are solutions of the system (11) with the initial
conditions (12). To simplify matters we set

ε =
1√
K

(35)

and we need to consider an expansion as ε→ 0+. Observe (see (20)) that

L(T ) ≈ L̃(T ) := 1− εLd sin(ε−1T ) +O(ε2), where ε→ 0+. (36)

On the other hand, now we use the expansion in the Taylor series of θ̃(T )
(see (18))

θd sinhT − α coshT = −α+ θdT +O(T 2), (37)

where T = ετ and τ <∞. An application of (37) yields

θ(T ) ≈ θ̃(T ) := −α+ εθd +O(ε2), where ε→ 0+. (38)

Combining this with Theorem 1 and Corollary 1 from [28] concludes the
following results.

Theorem 2 Let (L(T ), θ(T )) be the solution of the system (11). Next, the
presented below asymptotic behaviour holds

|L(T )− L̃(T )| = O(ε2), |θ(T )− θ̃(T )| = O(ε2), as ε→ 0+ (39)

uniformly for T ≤ T < ∞, where L̃ and θ̃ are defined in (20) and (18),
respectively. 2
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In Section 4 we will illustrate our results with several numerical simula-
tions.

4. Numerical methods The method that allows to find an approxi-
mation of dimensionless stiffness was proposed by McMahon and Cheng in
[20]. Taking specific values for VX , VY and α, as well as an initial choice for
the parameter K, the equations (11) with the initial conditions (12) were
integrated forward while the leg was compressed and re-extended until it re-
turned to full extension (L = 1). If the final leg angle was greater than α,
the procedure was repeated using a higher value for K, if the final angle was
less than α, the next approximation for the stiffness was smaller. Therefore
the Problem (15) of Section 2.2 can easily be solved numerically using the
shooting method. In the first step we use a numerical solver based on the
fourth order Runge-Kutta method to solve the initial value problem (11) and
(12) with a given K. Next, we find the T ∗ point such that θ(T ∗,K) = α. In
turn, L(T ∗,K) is contrasted with 1 and following the difference K value is
corrected using the secant method in relation to the next iteration. The loop
is continued until the required accuracy is achieved.
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Figure 2: The numerical solution of Problem (15) from Section 2.2 for different sets
of α and VX with a fixed value of VY . (a) VY = 0.1 and (b) VY = 0.2.
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Numerically found values of K∗ are presented in Figure 2 in relation to
the initial attack angle α for several VX values and vice versa. Principally,
not only for small angles, but also for the realistic regime of constants (see
Table 1), we see that in general K∗ is a moderately large parameter. The
dependence on α and VX is monotonic and we can predict that when VX is
the order of unity, K∗ has a quadratic component of VX (see (32)). In [28]
these claims were proved along with showing existence and uniqueness for the
main Problem from Section 2.2. Furthermore, as it is shown in part (b) on
the right, K∗ increases linearly with VX in the range from VX = 1.6 to 4.
The linear behavior continues in the range above 4, although apparently this
does not correspond to range used by “people and animals” from Table 1, and
therefore does not appear in the plot. As shown, in parts (a) and (b) on the
left, K∗ increases rapidly when the initial leg angle decreases.

Finally, we present the results for a typical simulation of running (see [20]).
The input parameters were chosen to represent a man of an average size: mass
= 72kg, leg length= 1.0m, running at a moderate speed (18.0km/h, between
5 and 6 minutes per mile). Other parameters: VX = 1.60, VY = 0.245 and
α = 0.50 (see Table 1 in [20]). The shooting method gives the following results

T ∗ = 0.622 and K∗ = 15.493.

These parameters are obtained for a long-distance runner. As will be seen
in Section 5, sprinters get a larger VX parameter and a smaller α angle, and
hence their K∗ is more than four times bigger than the value presented above.
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Figure 3: The comparisons between the numerically calculated values of θ and L,
and their approximations θ̃ and L̃, calculated from (18) and (20) for varying T . Solid
vertical lines mark on the T -axis the values of T ∗ and T̃c. Here α = 0.1, VX = 1 and
VY = 0.1.

At the end we will illustrate the results from Section 3 by using several
numerical simulations. Therefore, at the beginning, we present comparisons
between numerical values of θ and L, and their approximations θ̃ and L̃,
calculated from formulas (18) and (20), respectively. Figure 3 shows that
both approximations work very well, implying that the difference between T ∗

(see Problem of Section 2.2) and T̃c (cf. (19)) is negligible.
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Figure 4: The absolute error of the approximations (18) and (20) of the solutions to
(11) plotted on the log-log scale. The line y = ε2 is superimposed for the comparison.
Here α = 0.1, VX = 1, VY = 0.1 and T ∈ [0, επ].

Figure 5: The comparison between the numerically calculated value of K∗ and its
approximations: K̃ calculated from (22) and K̃∗ calculated from (24) for varying α.
Here VX = 1 and VY = 0.1.

Moreover, on Figure 4 above, we can see an exemplary verification of
Theorem 2. On the slow T scale (see [28]), at a compact interval [0, επ] for
the worst case T = επ, we calculated the error, i.e. the maximum difference of
the solution of (11) with their approximations (18) and (20). On the log - log
scale, the superimposed line y = ε2 indicates the correct order of convergence.
Plots of the absolute errors for θ and L are parallel to this line. Also, notice
that the original variables α, VX and VY have been used.

The last example refers to the validity of K̃ calculated from (22) as the
approximation to the solution of the Problem from Section 2.2, that is K∗. As
previously mentioned, the natural assumption for its accuracy is α� 1, so we
compare K∗ with K̃ for different values of the angle. Results are presented
in Figure 5. We can see that along with the decrease of α both values are
approaching each other, however, very slowly. In Figure 5, we can also see
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Figure 6: The relative error of the approximations K̃∗ calculated from (24) and K̃
calculated from (22) of K∗ for varying α. Here VX = 1 and VY = 0.1.

how the approximation K̃∗ from Theorem 1 looks like. As we noted above,
the approximation K̃∗ given in (24) is the asymptotic leading order of the
stiffness K∗ (see [28]) and it agrees with K̃ for α → 0+. On the other hand,
the approximation K̃ was found by a heuristic, yet sensible, reasoning during
which we may have lost some of the relevant information about the solution.
Therefore, systematically derived K̃∗ seems to be a better approximation of
the stiffness for a decent range of α.

Figure 6 illustrates the relative errors of both approximations K̃∗ and K̃
in relation to K∗ for varying α. Indeed, the approximation K̃∗ behaves much
better than K̃. It turns out that K̃ significantly overestimates the numerically
calculated values, while K̃∗ works almost perfectly in a certain α range.

5. Experiment and real data analysis In this section, the consid-
ered running model will be compared and verified with real data. The test
material was collected from videos of athletes running short (60m) and long
(5000m) distances. Four males and four females took part in the experiment.
Half of them are sprinters and the rest are long - distance runners. Competi-
tors with different physical parameters were selected. The camera was placed
perpendicularly to the direction of the run. The optical axis of the camera has
been aligned and the recording covers 10 meters. This allowed the athletes to
demonstrate their usual running techniques without changing them in order
to meet the requirements of the experiment (see [26]).

60: After a standard warm-up, each athlete performed one trial of a 60 -
meter run. The run was interesting for us from the moment the sprinter
reached submaximal velocity. The distance between 40 and 50 meters
has been recorded. The athlete is then in the second of three phases
of sprint running, so after the acceleration phase. At this moment the
runner’s body is straightened, and the step is full (see [8]).



40 Spring-mass running model

step length = 2,035m α=24,6

Figure 7: Tracker video analysis of the tested sprinter 4PM.

5000: The 5000 meters is a long - distance track event, where 12.5 laps are
completed around the 400m track. In the competition (19. Memorial of
Edward Listos, 29.05.2019 Wrocław), 10 meters in the straight line was
recorded during the middle (sixth) lap.

The tracker Video Analysis for run modeling was used (see [5]). The video
was divided into 0.033s frames. Which means that the trajectory of the point
adopted as the center of mass (CoM) was followed with the frequency of
30Hz. Usually, a 10 meters long trail provides these people with 4 to 6 steps.
The parameters in Tables 2, 3 and 4 are calculated as in Figure 7. In addition,
EX ± SD is determined for each column of Tables 2, 3 and 4, which denotes
the sample mean ± the sample standard deviation.

In the anatomical position, assuming the homogeneous gravitational field,
the centre of mass (CoM) lies approximately anterior to the second sacral
vertebra (see [15]). That is why the trajectory of the point is located at CoM
level. So, the area of greater trochanter was studied (see [1]). In addition, l0 is
the relative length of the upper extremities from the greater trochanter area
to the end of the heel bone. At the beginning, vx and vy were obtained. The
average of the attack velocities of each step was calculated while running 10
meters. The values of l0, vx and vy are presented in Table 2.

In our model, both the angle of attack and taking off are equal with
accuracy to the mark (see BCs (16)). Real life is not as perfect as assumptions,
so in the video analysis we observed that the taking off angle is usually greater
than the attack angle. Therefore, α parameter was calculated by averaging the
attack and taking off angles from the step, which was in front of the camera. It
allows us to avoid errors resulting from a change of perspective. Interestingly,
the difference in the attack angles for a group of sprinters is about 10◦ (0.17),
while for long-distance runners the difference is bigger and is around 15◦

(0.26). This is due to the specifics of the step in the long-distance run, where
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Athlete Sex Mass (kg) l0 (m) vx (m/s) vy (m/s)
Sprint

1EO F 60 0.94 08.51 0.72
2AJ F 57 0.99 10.53 0.69
3KA M 74 1.00 09.65 0.64
4PM M 76 1.08 09.54 0.67
EX 66.75 1.00 9.56 0.68
±SD 9.64 0.06 0.83 0.03

Long-Distance
5AM F 51 0.85 4.41 0.81
6OW F 48 0.96 4.23 0.85
7KK M 69 1.15 5.82 0.80
8RM M 68 1.10 5.69 0.78
EX 59 1.02 5.04 0.81
±SD 11.05 0.14 0.83 0.03

Table 2: Actual running parameters for the tested runners.

the back pendulum (during back swing, see [29]) dominates. Although the
attack angle is much smaller during slow running [23], the average of angles
causes in both groups the values of parameter α to be almost equal (see
Table 3). However, it is important that measurements obtained from the video
confirm correctness of the assumption about small α values in the model.

Additionally dimensionless parameters: VX , VY appearing in the bound-
ary conditions (12) can be found in Table 3. Horizontal and vertical Froude
numbers (VX , VY ) were obtained from vx and vy by dividing them by refer-
ence velocity (gl0)

1/2. Note that the dimensionless parameters of the tested
runners are in typical ranges from Table 1.

The K∗ and T ∗ parameters, presented in Table 4 below, have been numer-
ically calculated. To describe the next parameter in Table 4, which is obtained
from the model, let us recall the following relation

t∗c =

√
l0
g
T ∗, (40)

where t∗c is the contact time measured in seconds. Moreover, at this moment
it is necessary to introduce a new symbol - swing time, denoted by ts. It
is time between two consecutive contacts of the same leg with the ground
(i.e. ts = tc + 2ta). In addition, Table 4 contains contact, aerial and swing
times determined from the videos. Those parameters were computed by taking
appropriate differences between the consecutive moments of taking off and
landing. Moreover, note that the K∗ parameter in the second group is clearly
smaller (see Table 4). This fact is caused by about twice the value of the vx
parameter in the sprint group and a slight difference in α angles (see Tables
2 and 3).
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Athlete VX VY α
Sprint

1EO 2.79 0.25 0.30
2AJ 3.39 0.23 0.37
3KA 3.08 0.21 0.33
4PM 2.93 0.22 0.32
EX 3.05 0.22 0.33
±SD 0.26 0.02 0.03

Long-Distance
5AM 1.41 0.25 0.26
6OW 1.35 0.27 0.24
7KK 1.73 0.24 0.27
8RM 1.74 0.24 0.28
EX 1.56 0.25 0.26
±SD 0.21 0.01 0.02

Table 3: Dimensionless parameters: VX , VY and α for tested runners.

In addition, Table 4 also compares the length of the running step of a
model and from the video. The length of the step, denoted by ls, is obtained
from the model using the formulas (4) and (5). So, we get that

ls = 2l0 sinα+ vxta, (41)

where from (5) the aerial time is given by ta =
2vy
g . Moreover, the step length

from the video were computed using the ruler tool available in the Tracker
program.

In order to verify the results from Table 4, a relative error was calculated
for the parameters: tc, ta, ts, ls from the videos. Additionally, mean errors for
the athletes of each class (sprinters and long-distance runners) were obtained
as follows

εj =
1

4

4∑
i=1

εji , (42)

where the relative error of the i-th athlete (i = 1, 2, 3, 4) from the j-class
(j = 1, 2) is given by the formula

εji =

∣∣∣∣modelvalue − videovaluevideovalue

∣∣∣∣ .
It is clearly visible that tc is much better modeled for sprinters, while

ta for long-distance runners. In the final result, we have greater accuracy in
modeling the running step for the second group.

6. Conclusions Modeling the contact phase is much more difficult than
the aerial phase. We solved a nonlinear boundary value problem for the con-
tact phase numerically. Moreover, after a justified simplification, we proposed



Zofia Wróblewska 43

From Model From Video
Athlete K∗ T ∗ t∗c (s) ta (s) ts (s) ls (m) tc (s) ta (s) ts (s) ls (m)

Sprint Sprint
1EO 81.579 0.214 0.067 0.154 0.375 1.87 0.074 0.156 0.396 1.86
2AJ 65.225 0.205 0.064 0.141 0.346 2.13 0.066 0.154 0.379 2.12
3KA 66.063 0.216 0.067 0.130 0.327 1.90 0.072 0.143 0.347 1.90
4PM 69.574 0.216 0.072 0.136 0.344 2.04 0.086 0.149 0.396 2.01
EX 70.610 0.213 0.068 0.140 0.348 1.99 0.075 0.151 0.380 1.97
±SD 7.551 0.005 0.003 0.010 0.020 0.122 0.008 0.006 0.023 0.117

Long-Distance Long-Distance
5AM 54.186 0.373 0.110 0.165 0.440 1.16 0.127 0.174 0.475 1.16
6OW 61.723 0.358 0.112 0.167 0.446 1.19 0.121 0.176 0.483 1.19
7KK 52.407 0.341 0.117 0.165 0.447 1.57 0.151 0.166 0.483 1.57
8RM 57.044 0.351 0.117 0.159 0.443 1.50 0.156 0.160 0.476 1.49
EX 56.340 0.362 0.144 0.164 0.444 1.36 0.139 0.169 0.479 1.35
±SD 4.065 0.021 0.004 0.003 0.211 0.003 0.002 0.007 0.004 0.207
Table 4: The comparison of the contact time, the aerial time and the length of the
running step from the model and from the video.

error tc ta ts ls
Sprint

ε11 0.0946 0.0128 0.0285 0.0053
ε12 0.0303 0.0844 0.0749 0.0047
ε13 0.0694 0.0909 0.0866 0.0002
ε14 0.1638 0.0872 0.1042 0.0015
ε1 0.0895 0.0668 0.0736 0.0029

Long-Distance
ε25 0.1339 0.0517 0.0736 0.0025
ε26 0.0744 0.0511 0.0571 0.0001
ε27 0.2252 0.0060 0.0745 0.0019
ε21 0.2500 0.0063 0.0861 0.0045
ε2 0.1708 0.0415 0.0918 0.0022

Table 5: Relative errors and mean relative errors of parameters tc, ta, ts, ls.

an approximate solution to this problem. It turned out that the approxima-
tion of K∗ presented in Theorem 1 is correct, especially for small values of α.
K∗ is directly proportional to V 2

X and inversely proportional to α2. Addition-
ally, as it can be seen from the results in Theorem 2, the asymptotic solutions
of the nonlinear equations work very well as K →∞.

During the experiment we observed that a faster run can generate a greater
attack angle. The model works better for smaller α, so it is not surprising
that the general accuracy obtained in the long - distance running was slightly
better. It is worth noting, however, that in both groups the measurements
confirm the smallness of angle α, which is also the parameter that has the
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most affect on K∗. Also, increasing the Froude numbers VX and VY indicate
higher values of K∗, but the scale of changes is incomparably small.

In the high - speed running, the disproportion of ta and tc was observed:
i.e. tc < ta. This results from the fact that the average vertical force during
the contact time is usually greater than mg, whereas during the aerial time, it
cannot be exceeded. In the long - distance running, the aerial time is similar to
the contact time ta ∼ tc (see [6]). The ranges and dependence between these
parameters are closely related to the specifics of the two types of running
considered in the paper (see [24], [23]). The aerial time ta is mostly dependent
on vy, but also on α, while the contact time tc is mostly associated with α
(CoM need to overcome a longer way) and less with vx (velocity of overcoming
this way). We obtained more accurate results for ta, because the driving forces
are more predictable and we have the direct solution.

Even though all the parameters are in the typical ranges, it is necessary
to remember that these are dependent on the individual traits of the athlete.
That is why there are some errors of the parameter predictions from the
model when compared to the video analysis. However, the smallest mean
relative error is for the step length, because partial inaccuracies eliminate
each other during the calculations. This indicates a good holistic operation
and application of the model.

The results of the experiment show that moving away from symmetry
in boundary conditions will bring the model closer to a real running step.
Therefore, using the considerations of Geyer et al. [13], further work will
consist of examining the stability of the approximate solution for the dynamics
of the planar spring-mass model. In our study, the scope of stability in the
spring-mass running will be investigated by comparing a return-map analysis
based on the approximation with numerical results throughout the range of
the parameters: the spring stiffness and the angle of attack. We intend to
periodically attach the aerial phase of the movement, then determine the
initial angle related to the state at the touch-down and the take-off angle from
the condition for attaining the equilibrium length of the spring and also check
how the spring amplitude of deflections behaves in each subsequent contact
phase. On the other hand, we will use the fact that our approximate solution
has been systematically derived from the singular perturbation theory (cf.
[28]).
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Przybliżone rozwiązania i analiza numeryczna modelu masy
sprężynowej dla biegania

Zofia Wróblewska

Streszczenie W pracy rozważamy klasyczny model masy sprężynowej dla biegania
oparty na odwróconym elastycznym wahadle. Przedstawiamy nowe przybliżone roz-
wiązanie interesującego zagadnienia brzegowego dla układu dwóch nieliniowych rów-
nań różniczkowych, które w naturalny sposób uzyskujemy w tym modelu. Badamy
asymptotyczne zachowanie uzyskanych aproksymacji i podajemy asymptotyczną po-
stać współczynnika spężystości nogi dla małych kątów ataku. Symulacje pokazują,
że nowe rozwiązanie wypadło bardzo dobrze i wykazało dużą zgodność przybliżenia
z rozwiązaniem dokładnym. Nasze wyniki zostały zilustrowane kilkoma praktycz-
nymi przykładami pokazując, że pomiary parametrów biegu lekkoatletów są bliskie
wartościom uzyskanym z modelu.

Klasyfikacja tematyczna AMS (2010): 34E05; 34B15.

Słowa kluczowe: model masy srężynowej, krok biegowy, wahadło sprężynowe, zagad-
nienie brzegowe, rozwiązanie przybliżone, metoda strzelania.
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