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Abstract

We consider the classic spring-mass model of running which is built upon an inverted elastic
pendulum. In a natural way, there arises an interesting boundary value problem for the govern-
ing system of two nonlinear ordinary differential equations. It requires us to choose the stiffness
to ascertain that after a complete step, the spring returns to its equilibrium position. Motivated
by numerical calculations and real data we conduct a rigorous asymptotic analysis in terms of
the Poicaré-Lindstedt series. The perturbation expansion is furnished by an interplay of two
time scales what has an significant impact on the order of convergence. Further, we use these
asymptotic estimates to prove that there exists a unique solution to the aforementioned bound-
ary value problem and provide an approximation to the sought stiffness. Our results rigorously
explain several observations made by other researchers concerning the dependence of stiffness
on the initial angle of the stride and its velocity. The theory is illustrated with a number of
numerical calculations.

Keywords: singular perturbation theory, boundary value problem, Poincaré-Lindstedt series,
elastic pendulum, running

AMS Classification: 34E10, 34B15

1 Introduction
Running is the fundamental way of rapid legged locomotion for terrestrial animals and due to its
naturalness and everyday occurrence, it seems that there is nothing unusual in it. However, this way
of movement requires a complex and accurate collaboration of neural, motor, and muscular systems
with respect to the changing terrain [15]. The usual and common distinction between walking and
running is that the latter contains an aerial phase during which the animal has no contact with the
ground. This working definition is sufficient for us, however as research shows, it is too narrow to
include certain animals or conditions of locomotion (see [10] for a broader classification based on
the energetic concepts). Running is not just walking with a higher speed and there is a remarkable
transition of one mean of motion to the other [2]. Legged locomotion of various animals has been
investigated vigorously through the decades and it merges biology, engineering and mathematics into
one successful endeavour. This topic was investigated by Aristotle [30] while the first biomechani-
cal treatment was given by a seventeenth century Italian physiologist and mathematician Giovanni
Borelli [9, 26]. The Reader can find interesting modern surveys concerning scientific accounts of
locomotion in [7, 15, 36].
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For humans, running gains another important meaning apart of being simple way of locomotion
- namely, the sports. As a primal form of movement, running accompanies man from the very
beginning. It is difficult not to agree with the fact that running is probably the simplest and the
most natural sport that exist [3]. This is why it forms a basis for many other disciplines. In sport
science it is quite common to analyse and to attempt to describe some movements that are specific
to the considered discipline [17]. Many investigations lead to a better understanding of human
performance during races of different lengths [14, 5, 38] which, in turn, provided better insights on
improved training methods [13]. Mathematically, competitive running was described by Keller in his
variational model [25] based on a physiological findings of Hill [21]. Some further generalizations and
analysis are given in [32, 6, 37].

Mathematical modelling is an important part of the biomechanics. In this paper we are concerned
with the so-called spring-mass model of running which is based on an inverted elastic pendulum (see
the seminal papers [8, 27]). However, some earlier attempts accurately described walking with a
similar construction utilizing inverted pendulum [29]. These first investigations lead to a prolifera-
tion of interesting concepts, models, and methods that helped to design walking robots [11]. Further
generalizations of the spring-mass model are based on including additional legs, dampers and seg-
ments [19, 34, 35, 4, 33]. The two-legged version has an interesting bifurcation structure [28]. A very
thorough review of models of legged locomotion is given in [24].

In this paper we revisit the conceptual spring-mass model. Our focus is to solve the naturally
arising boundary-value problem for the spring stiffness via the asymptotic analysis. However, being
essentially an elastic pendulum the mathematical description of the system consists of two nonlin-
ear ordinary differential equations which possess a rich geometrical structure [18, 22] and chaotic
behaviour [12, 1].

The paper is structured as follows. In Section 2 we state derive the model and state the main
boundary value problem. By a numerical calculations we motivate that a perturbative expansion with
respect to the large spring stiffness is relevant for the solution of the problem. Section 3 contains
asymptotic analysis of main equations with the use of Poincaré-Lindstedt series. The material is
divided into two parts: one gives heuristic derivation of the perturbation solutions while the other
rigorously justifies them. In Section 4 we solve the initially stated boundary value problem and
provide an approximation for its solution. We close the paper with several numerical calculations
verifying our theory.

2 Model statement and motivation
The spring-mass model of running assumes that each leg can be described as an inverted elastic
pendulum. For the grounded phase of the jump, we assume the situation depicted on Fig. 1.

Let (x(t), y(t)) denote the Cartesian coordinates of the point mass m. Balancing respective
components of gravity and stiffness we can write

m
d2x

dt2
= k

(
l0 −

√
x2 + y2

)
sin θ,

m
d2y

dt2
= k

(
l0 −

√
x2 + y2

)
cos θ −mg,

(1)

where l0 is the equilibrium length of the spring and k is the stiffness. Plugging in the Cartesian
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Figure 1: A schematic of the main model.

formulas for the angle we obtain
d2x

dt2
=

k

m
x

(
l0√

x2 + y2
− 1

)
,

d2y

dt2
=

k

m
y

(
l0√

x2 + y2
− 1

)
− g.

(2)

The initial conditions are the following

x(0) = −l0 sinα,
dx

dt
(0) = u, y(0) = l0 cosα,

dy

dt
(0) = v, (3)

where u and v are, respectively, horizontal and vertical velocities. It is very convenient to cast the
governing equations (2) into nondimensional polar form. To this end, we naturally scale x and y with
respect to l0 and choose the pendulum time scale

√
g/l0. Moreover, we introduce the nondimensional

spring length L =
√
x2 + y2/l0 and the polar angle θ. Eventually, the polar form of (2) is the following

L
d2θ

dt2
+ 2

dL

dt

dθ

dt
= sin θ,

d2L

dt2
−
(
dθ

dt

)2

L = K (1− L)− cos θ,

(4)

where the only nondimensional parameter (spring stiffness) present in the equations is given by

K =
kl0
mg

. (5)
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Symbol Description Typical value

α Angle of attack 0.2− 0.8
U Horizontal Froude number 0.8− 2.6
V Vertical Froude number 0.05− 0.5

Table 1: Typical values of all appearing nondimensional physical parameters. Data based on [16]
and calculated for various animals.

The initial conditions for the polar coordinate system have the form

θ(0) = −α, dθ

dt
(0) = θd, L(0) = 1,

dL

dt
(0) = −Ld, (6)

with
θd = U cosα− V sinα, Ld = U sinα + V cosα, (7)

where we have defined the horizontal and vertical Froude numbers

U =
u√
gl0

, V =
v√
gl0

. (8)

In Tab. 1 we have collected all nondimensional parameters appearing in the model. Notice that
usually U is of order of unity, while V and α are small.

By the standard theory of ordinary differential equations the system (4) with (6) possesses a
unique solution in the vicinity of t = 0. On the other hand, from the point of view of applications a
question of completely different nature is relevant. Since the inverted elastic pendulum models the
forwardly hoping leg we are faced with a peculiar boundary value problem to solve.

Problem 1. Let (θ(t;K), L(t,K)) be the solution of the system (4) with (6). Find K∗ and the
smallest time t∗ > 0 satisfying

θ(t∗, K∗) = α, L(t∗, K∗) = 1. (9)

This means that the spring stiffness K has to be determined to ensure that during the first cycle
the spring will return to the equilibrium length precisely at the time for which the pendulum travels
to the angle α. This represents the grounded phase of the step, i.e. the leg completes the full cycle
before jumping into the aerial phase (see Fig. 1).

The above problem can easily be solved numerically using the shooting method as was done for
example in [27]. To illustrate this, we apply a numerical solver based on the forth order Runge-Kutta
method for solving the initial value problem (4) and (6) with a given K. Then, the point t∗ is found
such that θ(t∗) = α. Next, L(t∗) is compared with 1 and according to the difference the value of
K is corrected via the secant method for the next iteration. The loop continues until the required
accuracy is attained.

Numerically found values of K∗ are depicted on Fig. 2 with respect to the initial angle of attack
α for several values of U and vice-versa. We see that in general K∗ is a moderately large parameter
especially for small angles but also for realistic regime of constants (see Tab. 1). The dependence
on α and U is monotone and we can anticipate that for U of orders of unity K∗ has a quadratic
component of U . In the following sections we will prove these claims along with finding asymptotic
expansions of L and θ and proving existence and uniqueness for Problem 1.

3 Perturbation theory
In this section we provide an asymptotic analysis for solutions of the system (4) with (6) for large K.
First, to get a hint how the possible asymptotic solution may look like we proceed with the formal
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Figure 2: Numerical solution of Problem 1 for different sets of α and U with a fixed value of V = 0.1.

singular perturbation theory. Then, we provide rigorous proofs concerning the order of approxima-
tion.

3.1 Formal expansions

The above numerical results (compare [27]) indicate that for a wide range of realistic initial conditions
the appropriate stiffness being the solution of the Problem 1 is large. This suggests that we can gain
a meaningful insight by expanding (4) for K → ∞. To this end we will use the standard Poincaré-
Lindstedt method (see [23]).

We will see that solutions live on different time scales. Since K is the factor of L in the second
equation in (4) we expect that the dynamics takes place on the fast

√
Kt scale. On the other hand,

the equation for the angle indicates that the main time scale for θ is the slow one t. Furthermore, due
to the coefficient (dθ/dt)2 the period of oscillations is modulated by the slower time t. However, as
we will shortly see, the solution of Problem 1 occurs on the fast scale and it will be more convenient
to expand both variables with respect to that.

First, we will use the Poincaré-Lindstedt series to find the asymptotic behaviour of L and θ as
K →∞. To simplify matters we set

ε =
1√
K
, (10)

hence we are looking for an expansion as ε → 0. Being lead by the above discussion we introduce
the following fast time scales

τ =
t

ε
, τ+ = ω(ε)τ =

(
1 + εω1 + ε2ω2 + ...

) t
ε
. (11)

Now, substituting τ+ from (11) into (4) we obtain

ω(ε)2L′′ +
(
1− ω(ε)2(θ′)2

)
L = 1− ε2 cos θ, Lθ′′ + 2L′θ′ = ω(ε)−2ε2 sin θ, (12)

where now L = L(τ+), θ = θ(τ+), and prime denotes the derivative with respect to τ+. If we make
the following formal asymptotic expansions

L = L0 + εL1 + ε2L2 + ..., θ = θ0 + εθ1 + ε2θ2 + ..., (13)
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the equations become

ω(ε)2
(
L′′0 + εL′′1 + ε2L′′2 + ...

)
+
(
1− ω(ε)2

(
θ′0 + εθ′1 + ε2θ′2 + ...

)2) (
L0 + εL1 + ε2L2 + ...

)
= 1− ε2 cos θ,

(14)

and(
L0 + εL1 + ε2L2 + ...

) (
θ′′0 + εθ′′1 + ε2θ′′2 + ...

)
+ 2

(
L′0 + εL′1 + ε2L′2 + ...

) (
θ′0 + εθ′1 + ε2θ′2 + ...

)
= ω(ε)−2ε2 sin

(
θ0 + εθ1 + ε2θ2 + ...

)
.

(15)

Next, collecting respective coefficients of εn in (12) we obtain the following chain of differential
equations

ε0 : L′′0 + (1− (θ′0)
2)L0 = 1, L0(0) = 1, L′0(0) = 0,

ε1 : L′′1 + (1− (θ′0)
2)L1 = −2ω1L

′′
0 + 2 (θ′0θ

′
1 + ω1(θ

′
0)

2)L0, L1(0) = 0, L′1(0) = −Ld,
...

(16)

and
ε0 : L0θ

′′
0 + 2L′0θ

′
0 = 0, θ0(0) = −α, θ′0(0) = 0,

ε1 : L0θ
′′
1 + 2L′0θ

′
1 = −L1θ

′′
0 − 2L′1θ

′
0, θ1(0) = 0, θ′1(0) = θd,

...
(17)

To save space, we have written only the two first orders of ε since further equations complicate its
form very quickly. When we obtain these initial approximation we will see that subsequent equations
simplify considerably.

Starting from the ε0 equations we can multiply the one for θ0 by L0, integrate, and obtain the
conservation of angular momentum

L2
0θ
′
0 = 0, (18)

where we have used the fact that θ′0(0) = 0. This can only be satisfied if θ0(τ+) = −α. Therefore,
the L0 equation yields the solution L0(τ

+) = 1 and hence, the leading order solutions are constant.
The ε1 equations are now simplified

L′′1 + L1 = 0, θ′′1 = 0, (19)

which quickly can be solved to obtain L1(τ
+) = −Ld sin τ+ and θ1(τ+) = θdτ

+. These simple initial
approximations simplify further asymptotic equations. The are the following

ε2 : L′′2 + L2 = −2ω1L
′′
1 + θ2d − cosα, L2(0) = 0, L′2(0) = Ldω1,

ε3 : L′′3 + L3 =
− (2ω2 + ω2

1)L
′′
1 − 2ω1L

′′
2 + θ2dL1 + 2θd (θ

′
2 + 2ω1θd)− (sinα)θ1, L3(0) = 0, L′3(0) = Ld(ω2 − ω2

1),
...

(20)
and

ε2 : θ′′2 + 2θdL
′
1 = − sinα, θ2(0) = 0, θ′2(0) = −θdω1,

ε3 : θ′′3 + L1θ
′′
2 = −2 (L′1θ′2 + θdL

′
2) + (cosα)θ1 + ω1 sinα, θ3(0) = 0, θ′3(0) = −θd(ω2 − ω2

1),
...

(21)
Notice that the ε2 order L-equation will not be forced by a resonant term only if we take ω1 = 0.
Similarly, in the next order equation we can eliminate the secular terms when we take

ω2 = −
1

2
θ2d, (22)
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since L′′1 = −L1. Next, solving for L2 yields the (formal) behaviour of the solution up to the second
order

L(t) ≈ L̃(t) := 1− εLd sin τ+(t)− ε2
(
cosα− θ2d

) (
1− cos τ+(t)

)
,

where τ+(t) = ω̃(ε)
t

ε
, ω̃(ε) = 1− θ2d

2
ε2, ε� 1.

(23)

On the other hand, now we can go back to the ε2 order equation for the angle and solve it immediately
to obtain the approximation for θ

θ(t) ≈ θ̃(t) := −α + εθdτ
+(t)− 1

2
ε2(sinα)(τ+(t))2 + 2ε2Ldθd

(
1− cos τ+(t)

)
, (24)

where τ+(t) is defined in (23).
Having obtained the above approximation in the fast τ+ scale it is interesting to analyse the angle

equation in (4) in the slow t scale. Notice that since L(t) ≈ 1 for ε� 1 in the first approximation the
fast time scale τ+ enters the equation only through the damping term. In that case we obtain a second
order equation with a quickly varying coefficient which could be tackled by the homogenization theory
(see for ex. [31]). However, in our case in order to find the leading order of θ it is more convenient
to use the general multiple-scales method.

We start by assuming that θ = θ(t, τ). Since we are interested only in the leading order form of
the asymptotic expansion we do not have to use the strained time scale τ+ which would introduce
higher order terms. As an expansion for L we use

L(τ) = 1− ελ1(τ)− ε2λ2(τ)− ..., (25)

while the angle is expanded as follows

θ(t, τ) = θ0(t, τ) + εθ1(t, τ) + ε2θ2(t, τ) + ... (26)

The exact form of λ1 can be inferred from (23). The initial conditions can be translated into the
expansion as

θ0(0, 0) = −α, θ̇0(0, 0) = θd, θ′0(0, 0) = 0,

θi(0, 0) = 0, θ̇i(0, 0) = 0, θ′i(0, 0) = 0, i > 0,
(27)

where, similarly as above, the dot indicates the derivative with respect to t while prime is the
derivative with respect to τ . The equation can now be expanded to yield

(1− ελ1 − ...)
(
θ̈0 + ε−2θ′′0 + 2ε−1θ̇′0 + ε

(
θ̈1 + ε−2θ′′1 + 2ε−1θ̇′1

)
+ ε2

(
θ̈2 + ε−2θ′′2 + 2ε−1θ̇′2

))
− 2 (λ′1 + ελ′2 + ...)

(
θ̇0 + ε−1θ′0 + εθ̇1 + θ′1 + ...

)
= sin

(
θ0 + εθ1 + ε2θ2 + ...

)
.

(28)

Comparing various powers of ε yields an array

ε−2 : θ′′0 = 0,

ε−1 : 2θ̇′0 − λ1θ′′0 + θ′′1 − 2λ′1θ
′
0 = 0,

ε0 : θ̈0 + 2θ̇′1 − λ1
(
2θ̇′0 + θ′′1

)
− λ2θ′′0 − 2λ′1

(
θ̇0 + θ′1

)
− 2λ′2θ

′
0 + θ′′2 = sin θ0,

...

(29)

The first equation immediately gives us θ0(t, τ) = C0(t) + D0(t)τ . But from the initial conditions
(27) we have D0(t) = 0 and hence θ′0 = 0. As anticipated, the leading order term does not depend
on the fast time scale τ . Similarly, for the ε−1 equation initial conditions yield θ′1 = 0 and hence
θ1(t, τ) = C1(t).
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The first non-trivial behaviour comes from the ε0 equation which reduces to

θ̈0 + θ′′2 − 2λ′1θ̇0 = sin θ0. (30)

Now, since by assumption t and τ are independent variables, we can average over the fast time scale
to extract information only about the slow evolution. Integrating above yields

θ̈0 + θ′′2 − 2θ̇0λ′1 = sin θ0, (31)

where overline denotes the average over τ changing from 0 to 2π. Since λ1 is 2π-periodic up to O(ε)
due to (23), we have λ′1 = 0. Moreover, since τ enters the equation only through the periodic terms
we anticipate that θ2 is τ periodic and hence the average of its derivatives vanishes. This leaves

θ̈0 = sin θ0, (32)

which is the leading order equation for the evolution of θ0. This approximation suffices for our needs
and we will not continue the multiple scales analysis. We therefore claim that

θ(t) ≈ θ̃0(t), ε� 1, (33)

where θ̃0 is given by the solution of (32) (it can be solved analytically in terms of the Jacobi amplitude
function am). Notice also that if we put t = ετ and expand the solution of (32) with respect to ε→ 0
for fixed τ the first two terms correspond to the nonperiodic part of (24) with τ+ replaced by τ .
Moreover, if we make the reasonable small angle assumption sin θ = θ +O(θ3) we will have

θ(t) ≈ −α cosh t+ θd sinh t, ε� 1, α� 1. (34)

Of course we can continue the multiple scales approach and obtain higher order terms. For this
program to be successful, we should also include the t-scale expansion of the pendulum length L.
We will not pursue this topic here since approximations soon become very complicated and are not
needed in what follows.

The above analysis has been intended to be formal yet illustrative to clearly state the possible
form of the singular asymptotic expansion and the interplay of multiple time scales. We now proceed
to the rigorous proofs of the above results.

3.2 Rigorous proofs

First, we need the following result which is a generalization of Grönwall-Bellman’s lemma. Its
generalized version has been proven in [20] but here, for completeness, we include a simplified proof
of the case we need.

Lemma 1. Let ψ = ψ(t) and f = f(t) be continuous and positive functions. Assume that the
following inequality holds

ψ(t) ≤ f(t) + C

∫ t

0

(t− s)ψ(s)ds, (35)

for C > 0. Then

ψ(t) ≤ f(t) +
√
C

∫ t

0

sinh
(√

C(t− s)
)
f(s)ds. (36)

In particular, where f ≡ D =const. we have

ψ(t) ≤ D cosh
(√

Ct
)
. (37)
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Proof. First, put y(t) =
∫ t
0
(t−s)ψ(s)ds. Then, it follows that y′′ = y and hence from the assumption

y′′(t)− Cy(t) ≤ f(t). (38)

If we add and subtract
√
Cy′ and multiply both sides by e

√
Ct we arrive at(

e
√
Cty′

)′
−
√
C
(
e
√
Cty
)′
≤ e

√
Ctf(t). (39)

That is to say

y′ −
√
Cy ≤ e−

√
Ct

∫ t

0

e
√
Csf(s)ds, (40)

where we have used the fact that by the definition we have y(0) = 0 and y′(0) = 0. Once again,
multiplying by the integrating factor e−

√
Ct we have(

e−
√
Cty
)′
≤ e−2

√
Ct

∫ t

0

e
√
Csf(s)ds. (41)

The last integration gives

y(t) ≤ e
√
Ct

∫ t

0

e−2
√
Cu

(∫ u

0

e
√
Csf(s)ds

)
du = e

√
Ct

∫ t

0

(∫ t

s

e−2
√
Cudu

)
e
√
Csf(s)ds, (42)

and finally by evaluating the inner integral

y(t) ≤ 1√
C

∫ t

0

sinh
(√

C(t− s)
)
f(s)ds. (43)

The assertion easily follows by the assumption and definition of y. The proof is complete.

We are ready to prove the main result of this paper.

Theorem 1 (Fast time scale asymptotics). Let (L(τ+), θ(τ+)) be the solution of (12). Then, the
following asymptotic behaviour holds

|L(τ+)− L̃(τ+)| = O(ε3), |θ(τ+)− θ̃(τ+)| = O(ε3), as ε→ 0+, (44)

uniformly for τ+ ≤ T <∞, where L̃ and θ̃ are defined in (23) and (24).

Proof. We begin by finding the asymptotic behaviour of L. Write

L(t) = L̃(t) + λ(t), (45)

and change the time scale into the strained fast time τ+ = ω̃(ε)ε−1t (with a slight abuse of notation).
According to (4) and (23) the equation for the remainder λ has the form

ω̃2λ′′ + λ = f(τ+, ε) + (εθ̇(εω̃−1τ+))2λ, (46)

where, as before, the differentiation with respect to τ+ is denoted with a prime while the derivative
with respect to t is denoted with a dot, and

f(τ+, ε) : = ε
(
1− ω̃2 − ε2θ̇(εω̃−1τ+)2

)
Ld sin τ

+

+ ε2
[
θ̇(εω̃−1τ+)2 − cos θ(εω̃−1τ+) + ω̃2

(
cosα− θ2d

)
cos τ+

+
(
cosα− θ2d

) (
1− cos τ+

)
− ε2

(
cosα− θ2d

) (
1− cos τ+

)
θ̇(εω̃−1τ+)2

]
.

(47)

9



Moreover, the initial conditions for the remainder are zero: λ(0) = λ̇(0) = 0. Notice that we have
deliberately retained the t-derivative of θ evaluated at a point εω̃−1τ+.

The equation for λ can be easily transformed into an integral equation with the use of the Green’s
function

λ(τ+) =

∫ τ+

0

sin
(
ω̃(ε)−1

(
τ+ − s

))
f(s, ε)ds+ ε2

∫ τ+

0

sin
(
ω̃(ε)−1

(
τ+ − s

))
θ̇
(
εω̃(ε)−1s

)2
λ(s)ds.

(48)
Out claim is that f(τ+, ε) = O(ε3) uniformly with respect to τ+ ≤ T . To prove it, first notice that
by (23) we have

1− ω̃2 − ε2θ̇(εω̃−1τ+)2 = ε2
(
θ2d − θ̇(εω̃−1τ+)2 −

1

4
ε2θ4d

)
. (49)

Since, by uniform continuity on compact intervals θ̇(εω̃−1τ+)2 = θ2d + O(ε), the first term in the
definition of f , namely (47), is O(ε4) as ε→ 0. Now, the terms in the bracket in (47) can be written
as

θ̇(εω̃−1τ+)2 − θ2d + cosα− cos θ(εω̃−1τ+) + ε2
(
cosα− θ2d

) (
θ̇(εω̃−1τ+)2 − θ2d

)
cos τ+

− ε2
(
cosα− θ2d

)
θ̇(εω̃−1τ+)2 +

1

4
ε4θ4d

(
cosα− θ2d

)
cos τ+.

(50)

Note that cosα − cos θ(εω̃−1τ+) = O(ε). Again, we use uniform continuity of θ̇ and conclude that
the terms (50) are O(ε). Combining the previous two estimates we conclude that

|f(τ+, ε)| ≤ Dε3 uniformly for τ+ ≤ T for ε→ 0, (51)

for some constant D > 0. Now, from the integral equation (48) we can infer, for C > 0, that

|λ(τ+)| ≤ Dε3 + Cε2
∫ τ+

0

(
τ+ − s

)
|λ(s)|ds, (52)

where we have used the fact that θ̇ is bounded and | sin(u − v)| ≤ |u − v|. By Lemma 1 it follows
that

|λ(τ+)| ≤ Dε3 cosh
(√

Cετ+
)
≤ Dε3 cosh

(√
CTε

)
= O(ε3) as ε→ 0. (53)

And the first part of the assertion is proved.
The second part proceeds analogously by writing

θ(t) = θ̃(t) + ψ(t), (54)

for θ̃ defined in (24). In the τ+ scale the governing equation (12) yields the evolution of the remainder

Lψ′′ + 2L′ψ′ = g(τ+, ε) + ω̃−2ε2 sin(θ̃ + ψ), (55)

where

g(τ+, ε) := 2εL′
(
−θd + ε(sinα)τ+ − 2εLdθd sin τ

+
)
+ ε2L

(
sinα− 2Ldθd cos τ

+
)
. (56)

We can transform (55) into its equivalent integral form by multiplying it by L and integrating twice
keeping in mind vanishing initial conditions. Hence,

ψ(τ+) =

∫ τ+

0

G(τ+, s, ε)
[
g(s, ε) + ω̃−2ε2 sin

(
θ̃(s) + ψ(s)

)]
ds, (57)
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where the kernel is defined by

G(τ+, s, ε) = L(s)−2
∫ τ+

s

L(u)du. (58)

First, we will extract the meaningful information from g. To this end use the first part of the theorem
to write L = 1− εLd sin τ+ +O(ε2) uniformly with respect to τ+ ≤ T as ε→ 0 to obtain

g(τ+, ε) = ε2
[
2Ld cos τ

+
(
θd − ε(sinα)τ+ + 2εLdθd sin τ

+
)

+
(
1− 2εLd sin τ

+
) (

sinα− 2Ldθd cos τ
+
)]

+O(ε3).
(59)

Now, the terms with cos τ+ cancel leaving

g(τ+, ε) = ε2 sinα +O(ε3), (60)

since all other terms are uniformly bounded. Whence, the integral equation (57) becomes

ψ(τ+) = ε2
∫ τ+

0

G(τ+, s, ε)
[
ω̃−2 sin

(
θ̃(s) + ψ(s)

)
+ sinα +O(ε)

]
ds. (61)

Next, by a simple estimate we have∣∣∣ω̃−2 sin(θ̃(s) + ψ(s)
)
+ sinα

∣∣∣ ≤ ω̃−2
∣∣∣sin(θ̃(s) + ψ(s)

)
+ sinα

∣∣∣+ ∣∣sinα||ω̃−2 − 1
∣∣ , (62)

which, by the fact that θ̃ + α = O(ε), implies∣∣∣ω̃−2 sin(θ̃(s) + ψ(s)
)
+ sinα

∣∣∣ ≤ ∣∣ω̃−2∣∣ |ψ(s)|+O(ε). (63)

Moreover, due to asymptotic expansion of L the kernel can be written as

G(τ+, s, ε) = τ+ − s+O(ε), (64)

uniformly for τ+ ≤ T as ε→ 0. Therefore, combining (63) and (64) with (61) we arrive at

|ψ(τ+)| ≤ Eε3 + Fε2
∫ τ+

0

(τ+ − s)|ψ(s)|ds, (65)

for some constants E,F > 0 and we have used the fact that all the O(ε3) terms are uniform with
respect to τ+ ≤ T . Invoking Lemma 1 finally yields

|ψ(τ+)| ≤ Eε3 cosh
(√

Fετ+
)
≤ Eε3 cosh

(√
FεT

)
= O(ε3) as ε→ 0. (66)

This ends the proof.

From the above proof we can immediately spot a place when the usual trade-off between the order
of approximation and interval length can be made. Notice that in both final estimates (53) and (66)
we could even allow for τ+ ≤ ε−1T and still uniformly bound the exponential term. Therefore, the
expansions should be valid on longer ε-expanding intervals. As we will see this is only partially true
and we loose one order of convergence.

Corollary 1. Let (L(t), θ(t)) be the solution of (12). Then, the following asymptotic behaviour holds

|L(τ+)− L̃(τ+)| = O(ε2), |θ(τ+)− θ̃(τ+)| = O(ε2), as ε→ 0+, (67)

on an expanding interval τ+ ≤ ε−1T <∞, where L̃ and θ̃ are defined in (23) and (24).
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Proof. It suffices to reanalyse the proof of Theorem 1. When estimating the size of (47) we used the
assumption that εω̃τ+ → 0 when ε → 0 uniformly with respect to τ+ on compact intervals. Now,
since ετ+ stays bounded in that limit we can only conclude that |f(τ+, ε)| ≤ Cε2. The final estimate
(53) now reads

|λ(τ+)| ≤ Dε2 cosh
(√

Cετ+
)
≤ Dε2 cosh

(√
CTε

)
= O(ε2) as ε→ 0. (68)

The proof for θ has to be changed exactly in the same way. We obtain g(τ+, ε) = ε2 sinα + O(ε2)
and continue the reasoning accordingly.

We thus see the interplay between the two time scales. The pendulum length L oscillates on
the τ+ scale with the period modulated by the evolution of θ on the slow scale. Since θ(ω̃−1ετ+) is
uniformly continuous only on compact subsets of τ+, the asymptotic expansion looses one order to
account for that on ε-expanding τ+ intervals. It is also a very well known fact that without coupling
between L and θ the Poincaré-Lindstedt series would approximate the solutions with full order on
ε-expanding intervals.

Having in mind the above discussion we can prove the leading-order asymptotic expansion of θ
on the slow t scale.

Theorem 2 (Slow time scale asymptotics). Let θ = θ(t) be solution of (4). Then,

|θ(t)− θ̃0(t)| = O(ε) as ε→ 0, (69)

uniformly for t ≤ T , where θ̃0 is defined in (33).

Proof. The integral equation for θ can be obtained by multiplying the first equation in (4) by L
which brings up the angular momentum

d

dt

(
L2θ̇
)
= L sin θ. (70)

The above can be integrated twice and manipulated to yield

θ(t) = −α + θd

∫ t

0

L(s)−2ds+

∫ t

0

G(t, s, ε) sin θ(s)ds, (71)

where the kernel is given by (58). Now, write

θ(t) = θ̃0(t) + ψ(t), (72)

where θ̃0(t) is a solution of (32) with the original initial conditions (6) and hence ψ(0) = ψ̇(0) = 0.
Then, by the above argument we have

ψ(t) =

∫ t

0

G(t, s, ε)
(
sin (θ0(s) + ψ(s))− L(s)θ̈0(s)− 2L̇(s)θ̇0(s)

)
ds. (73)

Due to Corollary 1 we have L(t) = 1 − εLd sin (ω̃ε−1t) + λ(t), where λ = O(ε2) as ε → 0 uniformly
for t ≤ T since a compact interval for t is ε-expanding for τ+. Hence

ψ(t) =

∫ t

0

G(t, s, ε) (sin (θ0(s) + ψ(s))− sin θ0(s)) ds

+

∫ t

0

G(t, s, ε)
(
εLd sin

(
ω̃(ε)

s

ε

)
− λ(s)

)
sin θ0(s)ds

+ 2

∫ t

0

G(t, s, ε)θ̇0(s)
(
Ldω̃(ε) cos

(
ω̃(ε)

s

ε

)
− λ̇(s)

)
ds =: g1(t) + g2(t) + g3(t),

(74)
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where we used the fact that θ̈0 = sin θ0.
The ψ term is associated with g1 and we can estimate it as follows

|g1(t)| ≤ E1

∫ t

0

(t− s)|ψ(s)|ds, (75)

where E1 > 0. Further, for some constants E2, F2 > 0, the next term is simply

|g2(t)| ≤ F2

∫ t

0

(t− s)
(
ε+ ε2

)
ds ≤ E2ε, (76)

by the fact that t ≤ T . Lastly, we have λ̇ = O(ε) and by integration by parts we obtain∫ t

0

G(t, s, ε)θ̇0(s)ω̃(ε) cos
(
ω̃(ε)

s

ε

)
ds =

[
εG(t, s, ε)θ̇0(s) sin

(
ω̃(ε)

s

ε

)]t
s=0

− ε
∫ t

0

d

ds

(
G(t, s, ε)θ̇0(s)

)
sin
(
ω̃(ε)

s

ε

)
ds.

(77)

The term in the brackets vanishes because G(t, t, ε) = 0 which leaves us with

|g3(t)| ≤ E3ε, (78)

where E3 > 0. Combining our results for gi, i = 1, 2, 3, we now have

|ψ(t)| ≤ Eε+ F

∫ t

0

(t− s)|ψ(s)|ds, (79)

for some constants E,F > 0. Invoking Lemma 1 yields

|ψ(t)| ≤ Eε cosh
(√

Ft
)
≤ Eε cosh

(√
FT
)
= O(ε) as ε→ 0. (80)

The proof is complete.

We have thus found the exact asymptotic expansion of L and θ on two time scales. Now, we will
proceed to applying these results to solving the boundary value problems stated at the beginning of
this paper.

4 Boundary value problem
Armed with above results we will proceed to reanalyse Problem 1. First, we will prove that we can
always find its unique solution at least for sufficiently small initial angles α.

Theorem 3. There exists a number α0 > 0 such that Problem 1 has a unique solution for |α| < α0.
Moreover,

t∗ = επ +O(ε3) as ε→ 0, (81)

and

K∗ ≈ K̃∗ :=

(
πθd
2α

)2

=
( π
2α

(U cosα− V sinα)
)2
. (82)

Proof. We will work on the fast τ+ scale. Since L = L̃+O(ε3) the time τ ∗ of the first return of L to
its initial condition satisfies

Ld sin τ
∗ + ε

(
cosα− θ2d

)
(1− cos τ ∗) +O(ε2) = 0, (83)
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as ε→ 0. We can see that to the leading order τ ∗ ≈ π. This observation can be made more accurate.
Let µ be the solution of the following equation

Ld sinµ+ ε
(
cosα− θ2d

)
(1− cosµ) = 0, (84)

then, by classical theory we will have τ ∗ = µ + O(ε2) as ε → 0. Since µ > 0 we have sinµ =√
1− cos2 µ and the above is a quadratic equation in cosµ. The solution is

cosµ = −1 + 2ε2 (cosα− θ2d)
2

L2
d + ε2 (cosα− θ2d)

2 . (85)

Hence, the skipped terms in (83) are of the same order as the difference τ ∗ − µ. Therefore,

τ ∗ = π +O(ε2) as ε→ 0, (86)

and (81) follows.
Now, since we know τ ∗ we require that θ(τ ∗) = α. Multiplying θ equation (12) by L, integrating

twice, and using the kernel (58) we obtain

α = θ(τ ∗(ε)) = −α + εω̃−1θd

∫ τ∗(ε)

0

L(s, ε)−2ds+ ε2ω̃−2
∫ τ∗(ε)

0

G(τ ∗(ε), s, ε) sin θ(s, ε)ds. (87)

We have to show that there exists a number ε(α) for which the above has a solution. To this end
define

F (α, ε) = −2α + εω̃−1θd

∫ τ∗(ε)

0

L(s, ε)−2ds+ ε2ω̃−2
∫ τ∗(ε)

0

G(τ ∗(ε), s, ε) sin θ(s, ε)ds. (88)

Observe that F (0, 0) = 0 and

∂F

∂ε
(α, ε) = ω̃−1θd

∫ τ∗(ε)

0

L(s, ε)−2ds

+ ε

(
∂

∂ε

(
ω̃−1θd

∫ τ∗(ε)

0

L(s, ε)−2ds

)
+ 2ω̃−2

∫ τ∗(ε)

0

G(τ ∗(ε), s, ε) sin θ(s, ε)ds

)

+ ε2
∂

∂ε

(
ω̃−2

∫ τ∗(ε)

0

G(τ ∗(ε), s, ε) sin θ(s, ε)ds

)
.

(89)

When we put ε = 0 only the first term above survives and hence

∂F

∂ε
(α, 0) = θdπ 6= 0. (90)

Therefore, by the Implicit Function Theorem it follows that there exists a number α0 and a function
ε : (−α0, α0) → R, such that F (α0, ε(α0)) = 0. The boundary value problem has thus a unique
solution.

The last part of the proof is to find an approximation to the solution. Since τ ∗ ≈ π + O(ε2) we
can use θ̃ to determine ε(α) when we truncate O(ε2) terms. We have

α = −α + εθdπ. (91)

Solving and remembering that ε = K−1/2 yields (82) and the proof is complete.
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After proving our results it is required to find the conditions for L̃, θ̃ and K̃∗ to be good approx-
imations of the corresponding quantities. First of all, the perturbation expansion of L and θ have
been obtained under the assumption that K →∞ (i.e. ε→ 0) with all other parameters fixed. We
can a posteriori verify the assumptions on these. This can be done by noting that the subsequent
terms in the expansions (23) and (24) have to be of higher order. That is to say, we require that
ε2θ2d � εLd and ε2Ldθd � εθd. Expressing this in terms of K yields the consistency condition

1√
K
θ2d � Ld �

√
K, K � 1. (92)

For example, the above is satisfied if Ld, θd = O(1). Moreover, from (82) we read that the requirement
of K � 1 simultaneously keeping the conditions (92) satisfied forces α� 1. Hence, the angle should
be small what is also consistent with the data. Further, if we go back to (7) and express Ld and θd
in terms of the Froude numbers U and V , we see that Ld, θd ≈ U since V ≤ U for fixed α. Whence,
(92) reduce to

U �
√
K, K � 1. (93)

Moreover, from the above we can infer about the validity of the approximation (82) which can be
plugged into above to conclude that

2U

π
α� V � πU

2α
, (94)

which is consistent with the small angle assumption. Referring to Tab. 1 we see that our asymptotic
approximations are valid in the realistic regime of parameters.

In [27] several approximations of K∗ have been proposed. Authors claimed that for slower ve-
locities, the dependence of K∗ on U should be quadratic while for faster velocities, linear. In both
of these cases Authors gave very complex fitted empirical formulas which closely reproduced the
numerical results. Our approximation (82) gives a systematic explanation of the leading order be-
haviour of K∗ for small angles. It can also be treated as an approximation of the quadratic part of
dependence on U . Note however, that some other components of the velocity might be missing and
finding them is a subject of our future work. Furthermore, in the cited work Authors introduce the
so-called effective vertical stiffness Kvert which reduce to K when the subject is required to jump
vertically (i.e. α = 0 and V = 0). Authors heuristically derive that

Kvert ≈
(
Q
πU

sinα

)2

, (95)

where Q is an unknown constant dependent on the contact time. Notice the similarity to our
systematically devised result (82). This suggest that for small velocities and angles, the two stiffness
parameters behave in a similar fashion.

We will illustrate our results with several numerical simulations. On Fig. 3 we can see an
exemplary verification of Theorem 1. Error is calculated on the fast τ+ scale by choosing a compact
interval [0, π] and comparing solutions of (12) with their approximations (23) and (24) at τ+ = π
for the worst case. Observe that on the log-log scale the plots become parallel to the superimposed
K−3/2 line indicating the correct order of convergence. Note also that we have used the original
variables K, U and V .

The next example concerns the validity of (82) as the approximation to the solution of Problem 1.
Since, as we noted above, the natural assumption for its accuracy is α� 1, we compare K∗ with K̃∗
for different values of the angle. Results are given on Fig. 4. We can see that both values are close
to each other and their ration converge to 1 when α → 0+. Note, however, that although decently
accurate, K̃∗ is only the leading order approximation for K∗. Finding the subsequent corrections is
the aim of our future work.

15



50 100 500 1000
K

10-4

0.001

0.010

0.100

Abs. error

|L-L
˜
|

|θ-θ
˜
|

K
-3/2

Figure 3: Absolute error of the approximations (23) and (24) of the solutions to (12) plotted on the
log-log scale. The line y = K−3/2 is superimposed for comparison. Here, α = 0.4, U = 1, V = 0.1,
and τ+ ∈ [0, π].
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Figure 4: Comparison between the numerically calculated value of K∗ and its approximation K̃∗

calculated from (82) for varying α. On the left: K∗ (solid line) and K̃∗ (dashed line). On the right:
ratio of K∗ to K̃. Here, U = 1 and V = 0.1.
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5 Conclusion
We have solved a nonlinear boundary value problem that is very natural to modelling legged lo-
comotion. It appeared that the equations live on multiple time scales, however, the problem had
its solution on the fast scale τ+. Having proved the validity of asymptotic expansions we had used
them in applying the Implicit Function Theorem to grant the existence and uniqueness of solution to
Problem 1. It is also worth to mention that the approximation of the stiffness (82) is consistent with
all of the previously speculated features of the numerical solution. We have thus justified several
claims about its behaviour for a realistic regime of parameters.

The further work is will be based on considering expansions for larger velocities and finding the
subsequent terms in the expansion for K∗ with respect to small α. As was noted in [27] the stiffness
starts to depend linearly for large values of U . We also plan to justify this claim analytically.
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